China Good quality High Torque Nmrv Worm Reduction Gearbox for Electric AC/DC Motors bevel gearbox

Product Description

High Torque NMRV Worm Reduction Gearbox for DC Motor

With your specific requirements of Flange, Ratio, Shaft,etc, we can suggest the suitable
Wrom Gearbox for you.

We supply all kinds of Worm Gearbox with own factory for more than 15 years.
Contact us to get more details and factory price with very good quality products.

Different Types for your Choice:
NMRV: Hole input with flange
NRV: Shaft input without flange
E: Double extension worm shaft
F: With output flange
VS: With dual input shaft
AS: With single output shaft
AB: With dual output shaft

Product Specification:

Item Worm Gearbox
Type NMRV /  NRV
Model NMRV/NRV 25/30/40/50/63/75/90/110/130/150/185
Reduction Ratio 5,7.5,10,15,20,25,30,40,50,60,80,100
Flange FA / FL or as per your demands
Matching Motor 0.06KW~15KW
Material Die-casting Aluminum Alloy
Color Blue /Silver Grey /Customized
(pictures only for reference due to light influence)
Flange Standard PAM / IEC
Accessories Shaft, Flange, Torque arm, etc
Lubricant Synthetic Oil or Worm Gear Oil
Usage Machinery of food stuff, ceramics, chemical, packing, dyeing, wood working, glass industries, etc
Note:
1) please choose from above specifications.
2) If above options can not meet your demands, please send us your requirements(ratio, flange, mounting, application, or a picture of your old one), we will recommond you a suitable type. 

Product Parameters:

More Photos:

Detailed Drawing will be confirmed with you before order!

Packaging:

Applications:

Company Profile:

Lunyee Industries Development Co., Ltd. is a leading manufacturer for factory automation (FA) products,
we focus on power transmission and motion control solutions! 

Our main production are power transmission products like AC and DC(brush/brushless) gear motor, stepper motor,
high precision planetary gearbox (spur/helical gear) for stepping motor etc. 

-WE FOCUS ON CUSTOMER SATISFACTION!

All CHINAMFG people are dedicated in customer satisfaction! We serve our customer by high quality, low price, fast delivery
and quick response on after sales service!

No matter the products are manufactured by CHINAMFG or our sub-contractors, a warranty for quality is available from us!
Lunyee use the latest equipment for manufacturing and test!

Exhibition:

Delivery:

Feedbacks:
Rated Products:

FAQ:

Q: Are you trading company or manufacturer?
A: We are the motor manufaturer for 15 years in China.

Q: How to order?
A: send us inquiry → receive our quotation → negotiate details → confirm the sample → CHINAMFG contract/deposit →
mass production →cargo ready → balance/delivery → further cooperation

Q: How about Sample order?
A: Sample is available for you. please contact us for details.

Q: Which shipping way is available?
A: DHL, FedEx, By Sea are available. The other shipping ways are also available, please contact us if you need ship
by the other shipping way. 

Q: How long is the deliver, producing and shipping?
A: Deliver time depends on the quantity you order. usually it takes 7-25 working days.

Q: How to confirm the payment?
A: We accept payment by T/T, PayPal, the other payment ways also could be accepted, Please contact us before you
pay by the other payment ways. Also 50% deposit is available, the balance money should be paid before shipping.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Installation: Customized
Layout: Right Angle
Gear Shape: Worm
Step: Single-Step
Samples:
US$ 18.9/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gearbox

What is a Gearbox and How Does It Work?

A gearbox is a mechanical device that transmits power and changes the speed or torque of a rotating input shaft to a different output shaft. It is commonly used in various machines and equipment to control the speed and direction of motion.

Here’s how a gearbox works:

  1. Input Shaft: The gearbox receives rotational energy from an input shaft connected to a power source, such as an electric motor or an engine.
  2. Gears: Inside the gearbox are a set of gears with different sizes. These gears mesh with each other, and their arrangement determines the gear ratio, which defines how many revolutions the output shaft will make for a given rotation of the input shaft.
  3. Output Shaft: The output shaft is connected to the machinery or equipment that needs to be powered. As the gears rotate, the motion and power are transmitted from the input shaft to the output shaft.
  4. Gear Ratio: By selecting different gear combinations, the gearbox can change the speed and torque of the output shaft. A higher gear ratio results in higher torque and lower speed, while a lower gear ratio provides higher speed and lower torque.

Gearboxes play a crucial role in various applications, including automobiles, industrial machinery, robotics, and more, enabling efficient power transmission and speed control.

China Good quality High Torque Nmrv Worm Reduction Gearbox for Electric AC/DC Motors   bevel gearbox	China Good quality High Torque Nmrv Worm Reduction Gearbox for Electric AC/DC Motors   bevel gearbox
editor by CX 2023-12-22

China high quality AC three phase induction motor Asynchronous motor 110KW 90KW IEC High Efficiency Induction motor AC blower motor Fan motor gear motor AC Electric Motor manufacturer

Product Description

Power: 0.55kw-315kw Voltage: 220V/380/415/440V(can done as your need)
Frequency: 50/60HZ Pole: 2/4/6/8
Insulation Class: F Speed: 3000rpm/1500rpm/1000rpm/750rpm
Protection Grade: IP55 Frame No.: 63-355
Enamelled Wire: 100% Copper Wire Mounting Way: B3 Foot /B5 Flange /B35 Foot and Flange
Motor body : Cast iron body Brand: FOX MOTOR

Application: Pump, Fan, Industrial, Machine
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2.4.6.8
Samples:
US$ 4300/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

What safety precautions should be followed when working with electric motors?

Working with electric motors requires adherence to specific safety precautions to ensure the well-being of individuals and prevent accidents. Electric motors involve electrical hazards that can cause electric shock, burns, or other injuries if proper safety measures are not followed. Here’s a detailed explanation of the safety precautions that should be followed when working with electric motors:

  1. Qualified Personnel: It is important to assign work on electric motors to qualified personnel who have the necessary knowledge, training, and experience in electrical systems and motor operation. Qualified electricians or technicians should handle installation, maintenance, and repairs involving electric motors.
  2. De-Energization and Lockout/Tagout: Before performing any work on electric motors, they should be de-energized, and appropriate lockout/tagout procedures should be followed. This involves isolating the motor from the power source, ensuring that it cannot be energized accidentally. Lockout/tagout procedures help prevent unexpected startup and protect workers from electrical hazards.
  3. Personal Protective Equipment (PPE): When working with electric motors, appropriate personal protective equipment should be worn. This may include insulated gloves, safety glasses, protective clothing, and footwear with electrical insulation. PPE helps protect against potential electrical shocks, burns, and other physical hazards.
  4. Inspection and Maintenance: Regular inspection and maintenance of electric motors are essential to identify potential issues or defects that could compromise safety. This includes checking for loose connections, damaged insulation, worn-out components, or overheating. Any defects or abnormalities should be addressed promptly by qualified personnel.
  5. Proper Grounding: Electric motors should be properly grounded to prevent electrical shock hazards. Grounding ensures that any fault currents are redirected safely to the ground, reducing the risk of electric shock to individuals working on or around the motor.
  6. Avoiding Wet Conditions: Electric motors should not be operated or worked on in wet or damp conditions unless they are specifically designed for such environments. Water or moisture increases the risk of electrical shock. If working in wet conditions is necessary, appropriate safety measures and equipment, such as waterproof PPE, should be used.
  7. Safe Electrical Connections: When connecting or disconnecting electric motors, proper electrical connections should be made. This includes ensuring that power is completely switched off, using appropriate tools and techniques for making connections, and tightening electrical terminals securely. Loose or faulty connections can lead to electrical hazards, overheating, or equipment failure.
  8. Awareness of Capacitors: Some electric motors contain capacitors that store electrical energy even when the motor is de-energized. These capacitors can discharge unexpectedly and cause electric shock. Therefore, it is important to discharge capacitors safely before working on the motor and to be cautious of potential residual energy even after de-energization.
  9. Training and Knowledge: Individuals working with electric motors should receive proper training and have a good understanding of electrical safety practices and procedures. They should be knowledgeable about the potential hazards associated with electric motors and know how to respond to emergencies, such as electrical shocks or fires.
  10. Adherence to Regulations and Standards: Safety precautions should align with relevant regulations, codes, and standards specific to electrical work and motor operation. These may include local electrical codes, occupational safety guidelines, and industry-specific standards. Compliance with these regulations helps ensure a safe working environment.

It is crucial to prioritize safety when working with electric motors. Following these safety precautions, along with any additional guidelines provided by equipment manufacturers or local regulations, helps minimize the risk of electrical accidents, injuries, and property damage. Regular training, awareness, and a safety-focused mindset contribute to a safer working environment when dealing with electric motors.

electric motor

What industries and applications commonly use electric motors?

Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:

  1. Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
  2. Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
  3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
  4. Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
  5. Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
  6. Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
  7. Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
  8. Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.

These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.

China high quality AC three phase induction motor Asynchronous motor 110KW 90KW IEC High Efficiency Induction motor AC blower motor Fan motor gear motor AC Electric Motor   manufacturer China high quality AC three phase induction motor Asynchronous motor 110KW 90KW IEC High Efficiency Induction motor AC blower motor Fan motor gear motor AC Electric Motor   manufacturer
editor by CX 2023-12-15

China OEM CE Factory Declutchable Manual Override Worm Gearbox Used for Pneumatic Actuator car gearbox

Product Description

Description

 

HDM De-clutchable wormgear offers simple and reliable manual positioning of the valves, dampers and other quarter-turn devices when overriding existing pneumatic, electric or hydraulic quarter-turn actuators. All unit are suitable for both indoor and outdoor installation. The modular design is to provide the most efficient and effective solution to a full range of manual overriding requirements.

Main Product features
 

To engage manual operation, first pull out the lock handle and then rotate the clutch lever in anti-clockwise direction until engagement takes place. To return to automatic mode, first pull out the lock handle and then rotate the clutch lever in clockwise.

Remark:The bottom center of the HDM-4 is either F10/F14 or F10/F12

 

 

New Manual Override Countershaft Valve Connection Actuator Connection
b1 N b2 M D1 4-M1 D2 4-M2 E D3 4-Φ1 D4 4-Φ2
HDM-1 14 22 14 16 Φ50 4-M6 Φ70 4-M8 70*70 Φ50 4-Φ6.5 Φ70 4-Φ8.5
HDM-2 17 22 17 18 Φ70 4-M8 Φ102 4-M10 95*95 Φ70 4-Φ8.5 Φ102 4-Φ10.5
HDM-3 22 28 22 22 Φ102 4-M10 Φ125 4-M12 114*114 Φ102 4-Φ10.5 Φ125 4-Φ12.5
HDM-4 27 32 27 30 Φ102 4-M10 Φ125 4-M12 129*129 Φ125 4-Φ12.5 Φ140 4-Φ16.5
HDM-5 36 45 36 38 Φ140 4-M16 / / 156*156 Φ140 4-Φ17 Φ165 4-Φ21
HDM-6 46 50 46 48 Φ165 4-M20 / / 160*160 Φ165 4-Φ22 / /

New Manual Override A B ΦC F T Y H S K Ratio Rated Input Rated Onput
HDM-1 90 55 Φ88 115 44 145 120 53 10 26:1 Nm 250Nm
HDM-2 125 64 Φ110 135 62.5 178 133 56.5 13 28:1 Nm 450Nm
HDM-3 140 71 Φ129 166 70 212 180 68.7 12.5 38:1 Nm 700Nm
HDM-4 188.5 93 Φ174 202 94 280 195 84 15 54:1 Nm 1200Nm
HDM-5 222 110 Φ205 245 110 315 225 92 15 80:1 Nm 2000Nm
HDM-6 252 120 Φ275 280 125 320 252 102 15 78:1 Nm 3000Nm

1. Question:What is your main products?

   Answer:Our main products are Pneumatic Actuators, Electric Actuators, Actuated Valves And Valve actuators Accessories..
 

2. Question:Are you a trader or manufacturer ?

   Answer: We are the pneumatic actuators and electric actuators manufacturer , we have ability to do the customization products with experienced team, And we have own factory and production line.
 

3. Question:How do your make the quality guarantee for actuators?

   Answer:We have our own quality control system for incoming and outgoing of the materials, every product will be under controlled and tested before delivery to our customer , and we also provide 18 months guarantee ,beside we provide technical supporting .

4.  Question:When can I receive the Price of valve actuators ?

   Answer:We will give the Quotation Within 24 hours after we get your inquiry .Or Your can call or message us if it’s quite urgently.
 

5. Question:How to order our pneumatic actuators and electric actuators ?

   Answer:Please send us your inquiry by Email, , etc. we need to know the following informations before giving the formal Quotation.
1) Product information in details, Quantity, Other requirements
2) Delivery time required
 

6. Question:How can I get a sample to check your quality?

   Answer:Contact with our sales expert to arrange the sample delivery. Please send us the details of the sample before placing the order.
 

7. Question:Shall we pay the sample cost and transportation cost ?

   Answer:We will provide the sample by free of charge. Your will bear the freight cost.
 

8. Question:How long to prepare the sample ?

   Answer:Most of our products are under regular production and some of them we keep in stocks.
 

9. Question:How to delivery the sample to our place?

   Answer:Your can provide your forwarders contacts if any, or we will arrange it for you.
 

10. Question:What about the delivery date if we place the formal order ?

   Answer:Usually it takes 15~20days on the production .We know that on-time delivery is very crucial to our customers to meet dead-lines.
We monitor and expedite our supply chain to ensure that we delivery our products to our customers on-time all the time.

Application: Motor
Function: Change Drive Direction, Speed Changing
Layout: Coaxial
Hardness: Soft Tooth Surface
Installation: Torque Arm Type
Step: Double-Step
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gearbox

How to Choose the Right Gearbox for Your Machinery

Selecting the appropriate gearbox for your machinery involves careful consideration of several key factors. Here’s a step-by-step guide to help you make the right choice:

  1. Identify Application Requirements: Understand the specific requirements of your machinery, including torque, speed, load, direction of rotation, and duty cycle.
  2. Choose Gear Type: Determine the type of gears that best suit your needs, such as spur, helical, bevel, planetary, or others, based on factors like efficiency, noise level, and space constraints.
  3. Calculate Gear Ratio: Calculate the required gear ratio to achieve the desired output speed and torque. Consider factors like input and output shaft speeds.
  4. Select Gear Material: Choose appropriate gear materials based on factors like durability, wear resistance, and corrosion resistance. Common materials include steel, cast iron, and various alloys.
  5. Consider Efficiency: Evaluate the gearbox’s efficiency and select one that meets your energy efficiency requirements.
  6. Account for Load Conditions: Analyze the load conditions, such as constant or intermittent loads, shock loads, and starting and stopping frequencies.
  7. Check Lubrication Requirements: Consider the lubrication needs of the gearbox and ensure proper lubrication for smooth operation and longevity.
  8. Factor in Space Constraints: Consider the available space for installing the gearbox and choose a size that fits within your machinery.
  9. Assess Environmental Conditions: Evaluate the operating environment, including temperature, humidity, and exposure to dust or corrosive substances.
  10. Review Mounting Options: Determine the mounting options that work best for your machinery, such as foot-mounted, flange-mounted, or shaft-mounted gearboxes.
  11. Consult with Experts: Seek advice from gearbox manufacturers or engineers to ensure you make an informed decision.

Choosing the right gearbox is crucial for achieving optimal machinery performance, longevity, and reliability.

China OEM CE Factory Declutchable Manual Override Worm Gearbox Used for Pneumatic Actuator   car gearbox	China OEM CE Factory Declutchable Manual Override Worm Gearbox Used for Pneumatic Actuator   car gearbox
editor by CX 2023-12-12

China high quality Hmvp Three Phase Frequency Variable Speed Regulation Indunction Electric Motor vacuum pump belt

Product Description

HMVP series frequency-variable & speed-regulation motor is a special asynchronous motor which used in system power supplied by transducer. It is a new special series products designed conformably in whole country .It can be suit with various types of SPWM frequency conversion equipment all over the world. It has dependent air-cooler, can assure the motor have effective cooling in different rotate speed. These series motors are widely used in engine, metallurgy, weave, printing and dyeing, chemical industrial, mine and so on, as well as the fan, pump adjust condition.

HMVP series motors are of energy saving, wide range of speed-regulation, low noise, small vibration and characteristic of low-speed constant torque output, high-speed constant power output. Its mounting dimension and power totally conform to IEC standard of better Versatility and interchangeability.

1. 100% output with 100% copper winding;
2. CHINAMFG customer’s requirement & customer’s drawing; 
3. Different size of flange to fit for different device, customized flange is workable.
4. All materials are brand-NEW. 

Technical Data

Frame Size 80~355mm
Frequency 50HZ, 60HZ
Output Power 0.18KW-315KW
Voltage 220/380V,380/660V,230/400V,400V/690V
Insulation Class B,F,H
Protection IP55
Cooling Method IC411
Wire 100% Copper Wire
Mounting Type B3,B5,B14,B35multi and pad mounting
Pole 2, 4, 6, 8

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2, 4, 6, 8
Customization:
Available

|

electric motor

How does an electric motor ensure efficient energy conversion?

An electric motor ensures efficient energy conversion by employing various design features and principles that minimize energy losses and maximize the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors achieve efficient energy conversion:

  1. Efficient Motor Design: Electric motors are designed with careful consideration given to their construction and materials. High-quality magnetic materials, such as laminated iron cores and permanent magnets, are used to reduce magnetic losses and maximize magnetic field strength. Additionally, the motor’s windings are designed with low-resistance conductors to minimize electrical losses. By optimizing the motor’s design, manufacturers can improve its overall efficiency.
  2. Reducing Friction and Mechanical Losses: Electric motors are designed to minimize friction and mechanical losses. This is achieved through the use of high-quality bearings and lubrication systems that reduce friction between moving parts. By reducing friction, the motor can operate more efficiently, translating more of the input energy into useful mechanical work rather than dissipating it as heat.
  3. Efficient Control and Power Electronics: Electric motors employ advanced control techniques and power electronics to enhance energy conversion efficiency. Variable frequency drives (VFDs) are commonly used to control motor speed and torque, allowing the motor to operate at optimal efficiency levels under varying load conditions. Power electronics devices, such as insulated gate bipolar transistors (IGBTs) and MOSFETs, minimize switching losses and optimize power flow within the motor.
  4. Regenerative Braking and Energy Recovery: Some electric motors, particularly those used in hybrid electric vehicles (HEVs) and electric trains, incorporate regenerative braking systems. These systems convert the kinetic energy of the moving vehicle back into electrical energy, which can be stored and reused. By capturing and reusing energy that would otherwise be wasted as heat during braking, regenerative braking significantly improves overall energy efficiency.
  5. Efficient Cooling and Thermal Management: Electric motors generate heat during operation, and excessive heat can lead to energy losses and reduced efficiency. To mitigate this, motors are designed with efficient cooling systems such as fans, heat sinks, or liquid cooling methods. Proper thermal management ensures that the motor operates within the optimal temperature range, reducing losses and improving overall efficiency.
  6. High-Efficiency Standards and Regulations: Governments and organizations have established energy efficiency standards and regulations for electric motors. These standards encourage manufacturers to produce motors with higher efficiency ratings. Compliance with these standards ensures that motors meet certain efficiency criteria, resulting in improved energy conversion and reduced energy consumption.

By incorporating these design features, control techniques, and efficiency measures, electric motors achieve efficient energy conversion. They minimize energy losses due to factors such as resistance, friction, and heat dissipation, ensuring that a significant portion of the input electrical energy is converted into useful mechanical work. The continuous advancements in motor design, materials, and control technologies further contribute to improving the overall energy efficiency of electric motors.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

What is an electric motor and how does it function?

An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:

  1. Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
  2. Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
  3. Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
  4. Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
  5. Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
  6. Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.

In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.

China high quality Hmvp Three Phase Frequency Variable Speed Regulation Indunction Electric Motor   vacuum pump belt	China high quality Hmvp Three Phase Frequency Variable Speed Regulation Indunction Electric Motor   vacuum pump belt
editor by CX 2023-12-11

China Good quality Gft CZPT Gft110 Gft160 Gft80 Final Drive Reducers Gearbox gearbox engine

Product Description

truck crane swing planetary gear reducer hydraulic slewing drive gearbox

Product description:

Daixin planetary reducer gearbox is designed with large torque, high start and transmission efficiency, low-speed stability, compact radial size, low noise, etc.

The main devices we are making are walking reducers, lifting reducers and swing reducers.

They are widely used for vehicle cranes, crawler cranes, truck mounted cranes, marine cranes, aerial work trucks, excavators, etc.
 

 

 

Product Slewing drive reducer
Model DH10B103S
Max. output torque 11500 Nm
Ratio 102.95:1
Max. input torque  111.5Nm
Max. input speed 1788 r/min
Max. output speed 17.37 r/min
Application slewing drive for truck crane, wrecker, aerial working platform, etc
OEM  Acceptable

 

 

Product features:
 

1.Compact size
2.Low noise
3.High start-up and working efficiency
4.Easy installation, operation and maintenance
5.Various models for wide applications
6.One year warranty 
7.Free components for replacement within warranty period
8.Professional and tailored solution for different requirements
9.Free technical support at any time
10.Customer training is available.

 

Packing and delivery details:

Packing method: plywood box (1 pc / box)

 

 

Company details:

ZheJiang CHINAMFG Intelligent Technology Co., Ltd is a scientific and technological enterprise engaged in the research, development and production of planetary gear transmission products, like slewing reducers, Travel drive reducers, lifting winch reducers, hydraulic winches, etc.

The company has always put quality management as the top priority of the company’s development. The products are manufactured not only meet the international ISO 4301 and ISO9001 standards, but also meet the US SAE J706 and the European Union CE standards. 

Daixin Intelligent Technology relies on quality, reputation and service to develop, cultivate and consolidate the national and global markets. Be our partners and be our friends.
 

 

 

 

Our clients:

The company relies on quality, reputation and service to develop, cultivate and consolidate the national and global markets.

Currently, the cooperative customers include: the famous construction machinery manufacturers Zoomlion, the largest wrecker manufacturer ZheJiang CHINAMFG Company, and the largest high-altitude vehicle manufacturer HangZhou Handler Company.

Products are also exported to Russia, Belarus, Spain, UK, Canada, Australia, India, Malaysia and other countries.
 

 

 

 

FAQ:

1.How to choose the product which meets our requirement?
A) Look through our shop, find a proper item, send me an inquiry, I quote details for you.
B) In case no suitable item in our shop, send me an inquiry with your requirements, we can customize for you.  

2.What is payment term?
A) For regular design: 30% deposit, the balance before loading.
B) For customized design: 50% deposit, the balance before loading.
Payment term is negotiable according to order. 

3.What is delivery time?
A) For common models in stock, delivery time are 5-7 days.
B) For customized models and new production, delivery time are 30-40 days.

5.How about after-sale service?
A) Within warranty, all spare parts are delivered for free.
B) Exceed warranty, all spare parts are offered with the lowest production cost.
Warranty period is 1 year, but our servicing is for the whole lifetime of product, so no worry for reselling and personal resell.

 

Thank you for the time. For any question or requirements, please contact me 🙂
 

 

 

 

Application: Machinery, Agricultural Machinery, Wrecker, Truck Crane
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Three-Step
Customization:
Available

|

Customized Request

gearbox

Can I Use Synthetic Oil in My Gearbox?

Yes, you can use synthetic oil in your gearbox, and in many cases, it can offer several advantages over conventional mineral-based oils:

  • Improved Temperature Stability: Synthetic oils typically have a higher resistance to thermal breakdown, making them suitable for gearboxes that operate at high temperatures.
  • Enhanced Lubrication: Synthetic oils often have superior lubrication properties, providing better protection against friction, wear, and component damage.
  • Extended Oil Change Intervals: Synthetic oils can often withstand longer operating periods without losing their effectiveness, reducing the frequency of oil changes and maintenance.
  • Reduced Viscosity Changes: Synthetic oils are less prone to viscosity changes at different temperatures, ensuring consistent lubrication performance in varying conditions.
  • Lower Friction and Energy Loss: The smoother molecular structure of synthetic oils can lead to reduced internal friction, potentially improving gearbox efficiency and performance.
  • Cold Weather Performance: Synthetic oils generally flow better at low temperatures, making them suitable for gearboxes operating in cold climates.
  • Protection Against Oxidation: Synthetic oils often have better resistance to oxidation, helping to prevent the formation of sludge and deposits that can impact gearbox performance.

However, before switching to synthetic oil, it’s important to consider the manufacturer’s recommendations and specifications for your specific gearbox model. Some gearboxes may have specific requirements or restrictions on the type of lubricant to use. If the manufacturer approves the use of synthetic oil, it can be a beneficial choice, but if not, sticking to the recommended oil type is crucial to ensure proper gearbox function and warranty coverage.

China Good quality Gft CZPT Gft110 Gft160 Gft80 Final Drive Reducers Gearbox   gearbox engineChina Good quality Gft CZPT Gft110 Gft160 Gft80 Final Drive Reducers Gearbox   gearbox engine
editor by CX 2023-12-08

China manufacturer Rated Speed 910~2840rpm 2HP AC Motor Three Phase Electric Motor vacuum pump oil

Product Description

Product Description

Introduction:

     

Y series motors are totally enclosed and fan cooled(TEFC),three-phase squirrel cage induction motors.They are newly designed in conformity with the relevant requirements of IEC standards.

Y series motors have outstanding performance,such as high efficiency,energy-saving,high starting torque,low noise,little vibration,reliable operation and easy maintenance,etc.
Y series motors are widely used in many places,where do not exist combustible,explosive or corrosive gas,and without any special requirements,such as drilling machines,pumps,fans,mixer,transport machines,food machines,agriculture machines and equipments,etc.

Motor Features:

1. Frame size:H56-355;

2. Power:0.12-315Kw;

3. Voltage: 380V;

4. Rated Frequency: 50 Hz / 60 Hz;

5. Poles: 2 / 4 / 6 / 8 / 10

6. Speed: 590 -2980 r/min

7. Ambient Temperature: -15°C-40°C 

8. Model of CONEECTION: Y-Connection for 3 KW motor or less while Delta-Connection for 4 KW motor or more;

9. Mounting:  B3; B5; B35; B14; B34; 

10. Current: 1.5-465 A (AC);

11. Duty: continuous (S1);

12. Insulation Class:  B;

13. Protection Class:  IP44,IP54,IP55;

14. Frame material: aluminum body(56-132 frame), cast iron(71-355 frame)

15. Terminal box : Top or Side 

16. Cooling Method: IC411 Standards;

17. Altitude: No more than 1,000 meters above sea level;

18. Packing: 63-112 frame be packaged by carton&pallets

                   132-355 frame be packaged by plywood case;

19. Certifications: CE, CCC, ISO9001: 2008

 

Factory Advantages

 

1 . 15 years history

 

2. Competitive Price

 

3. Guaranteed Quality 

 

4. Fast delivery time, Normal models about 15-20days , another not normal models need about 30days

 

5. 100% testing after each process and final testing before packing ,all raw material is good quality .100% cooper wire, Cold-rolled silicon steel sheet,good quaility shafts ,bearings,stators ,fan,fan covers.and so on.

 

6. High efficiency

 

7. Low noise 

 

8. Long life

 

9. Power saving

 

10. Slight vibration

 

11. It is newly designed in conformity with the relevant rules of IEC standards, Strictly and Perfect Management is guaranteed for Production ;

 

12. Professional Service

 

13. Warranty: 12 months from date of delivery

 

14. Main Market: South America, Middle East, Southest Asia, Europe,Africa and so on  

 

15. We have Certification for CE, CCC, ISO9001,High quality and competitive price !

 

Installation Instructions

The series of YD motor is 1 of the main derivations of Y series three-phase asynchronous motor.
It can change the speed of the motor by changing the pole, so that the power can be matched reasonably and the variable speed system can be simplified. And it has the advantages of high efficiency, energy saving, large starting torque, good performance and low noise and vibration.

It is widely used in machine tool, mining, metallurgy, textile, printing and dyeing industries.
 

YD YD2 Series Variable Speed Three-Phase Asynchronous Motor
1). Frame: 80 – 280 mm
2). Power: 0.35 – 82 kW
3). Voltage: 380 V , or Customized
4). Frequency: 50 Hz
5). Shell: cast iron body, aluminum body
6). Pole: 2, 4, 6, 8, 10, 12
7). Protection degree: IP55, IP54
8). Insulation class: F
9). Cooling method: IC411
10). Duty Type: S1
11). Mounting arrangement: B3/B5/B14/B35/B34 or other
12).Certificates: CE, CCC, ISO9001, SGS and so on

Working Condition: ambient temperature is -15oC to 40oC, and below 1000 CHINAMFG above sea level
Technical date

Model Rated Output Full Load      
KW HP Speed
(r.p.m)
Current
(A)
Eff
(%)
Power factor
(cosθ)
Ist/In Tst/Tn  
380V 50Hz synchronous Speed 3000r/min(2 poles)
Y-801-2 0.75 1 2830 1.81 75 0.84 6.5 2.2 2.3
Y-802-2 1.1 1.5 2830 2.52 77 0.86 7.0 2.2 2.3
Y-90S-2 1.5 2 2840 3.44 78 0.85 7.0 2.2 2.3
Y-90L-2 2.2 3 2840 4.83 80.5 0.86 7.0 2.2 2.3
Y-100L-2 3 4 2870 6.39 82 0.87 7.0 2.2 2.3
Y-112M-2 4 5.5 2890 8.17 85.5 0.88 7.0 2.2 2.3
Y-132S1-2 5.5 7.5 2900 11.1 85.5 0.88 7.0 2.0 2.3
Y-132S2-2 7.5 10 2900 15.0 86.2 0.88 7.0 2.0 2.3
Y-160M1-2 11 15 2930 21.8 87.2 0.88 7.0 2.0 2.3
Y-160M2-2 15 20 2930 29.4 88.2 0.89 7.0 2.0 2.3
Y-160L-2 18.5 25 2930 35.5 89 0.89 7.0 2.0 2.2
Y-180M-2 22 30 2940 42.2 89 0.89 7.0 2.0 2.2
Y-200L1-2 30 40 2950 56.9 90 0.89 7.0 2.0 2.2
Y-200L2-2 37 50 2950 69.8 90.5 0.89 7.0 2.0 2.2
Y-225M-2 45 60 2970 83.9 91.5 0.89 7.0 2.0 2.2
Y-250M-2 55 75 2970 103 91.5 0.89 7.0 2.0 2.2
Y-280S-2 75 100 2970 139 92 0.89 7.0 2.0 2.2
Y-280M-2 90 125 2970 166 92.5 0.89 7.0 2.0 2.2
Y-315S-2 110 150 2980 203 92.5 0.89 6.8 1.8 2.2
Y-315M-2 132 180 2980 242 93 0.89 6.8 1.8 2.2
Y-315L1-2 160 220 2980 292 93.5 0.89 6.8 1.8 2.2
Y-315L2-2 200 270 2980 365 93.5 0.89 6.8 1.8 2.2
380V 50Hz synchronous Speed 1500r/min(4 poles)
Y-801-4 0.55 0.75 1390 1.51 73 0.76 6.0 2.4 2.3
Y-802-4 0.75 1 1390 2.01 74.5 0.76 6.0 2.3 2.3
Y-90S-4 1.1 1.5 1400 2.75 78 0.78 6.5 2.3 2.3
Y-90L-4 1.5 2 1400 3.65 79 0.79 6.5 2.3 2.3
Y-100L1-4 2.2 3 1430 5.03 81 0.82 7.0 2.2 2.3
Y-100L2-4 3 4 1430 6.82 82.5 0.81 7.0 2.2 2.3
Y-112M-4 4 5.5 1440 8.77 84.5 0.82 7.0 2.2 2.3
Y-132S-4 5.5 7.5 1440 11.6 85.5 0.84 7.0 2.2 2.3
Y-132M-4 7.5 10 1440 15.4 87 0.85 7.0 2.2 2.3
Y-160M-4 22 15 1460 22.6 88 0.84 7.0 2.2 2.3
Y-160L-4 15 20 1460 30.3 88.5 0.85 7.0 2.2 2.3
Y-180M-4 18.5 25 1470 35.9 91 0.86 7.0 2.0 2.2
Y-180L-4 22 30 1470 42.5 91.5 0.86 7.0 2.0 2.2
Y-200L-4 30 40 1470 56.8 92.2 0.87 7.0 2.0 2.2
Y-225S-4 37 50 1480 70.4 91.8 0.87 7.0 1.9 2.2
Y-225M-4 45 60 1480 84.2 92.3 0.88 7.0 1.9 2.2
Y-250M-4 55 75 1480 103 92.6 0.88 7.0 2.0 2.2
Y-280S-4 75 100 1480 140 92.7 0.88 7.0 1.9 2.2
Y-280M-4 90 125 1480 164 93.5 0.89 6.8 1.9 2.2
Y-315S-4 110 150 1480 201 93.5 0.89 6.8 1.9 2.2
Y-315M-4 132 180 1490 240 94 0.89 6.8 1.9 2.2
Y-315L1-4 160 220 1490 289 94.5 0.89 6.8 1.9 2.2
Y-315L2-4 200 270 1490 361 94.5 0.89 6.8 1.9 2.2
380V 50Hz synchronous Speed1000r/min(6Poles)
Y-90S-6 0.75 1 910 2.25 72.5 0.70 5.5 2.0 2.2
Y-90l-6 1.1 1.5 910 3.16 73.5 0.72 5.5 2.0 2.2
Y-100L-6 1.5 2 940 3.97 77.5 0.74 6.0 2.0 2.2
Y-112M-6 2.2 3 940 5.16 80.5 0.74 6.0 2.0 2.2
Y-132S-6 3.0 4 960 7.23 83 0.76 6.5 2.0 2.2
Y-132M1-6 4.0 5.5 960 9.40 84 0.77 6.5 2.0 2.2
Y-132M2-6 5.5 7.5 960 12.6 85.3 0.78 6.5 2.0 2.2
Y-160M-6 7.5 10 970 17.0 86 0.78 6.5 2.0 2.0
Y-160L-6 11.0 15 970 24.6 87 0.78 6.5 2.0 2.0
Y-180L-6 15.0 20 970 31.4 89.5 0.81 6.5 1.8 2.0
Y-200L1-6 18.5 25 970 37.7 89.8 0.83 6.5 1.8 2.0
Y-200L2-6 22.0 30 970 44.6 90.2 0.83 6.5 1.8 2.0
Y-225M-6 30.0 40 980 59.5 90.2 0.85 6.5 1.7 2.0
Y-250M-6 37.0 50 980 72.0 90.8 0.86 6.5 1.8 2.0
Y-280S-6 45.0 60 980 85.4 92 0.87 6.5 1.8 2.0
Y-280M-6 55 75 980 104 92 0.87 6.5 1.8 2.0
Y-315S-6 75 100 990 141 92.8 0.87 6.5 1.8 2.0
Y-315M-6 90 125 990 169 93.2 0.87 6.5 1.8 2.0
Y-315L-6 110 150 990 206 93.5 0.87 6.5 1.8 2.0
Y-315L2-6 132 180 990 246 93.8 0.87 6.5 1.8 2.0
380V 50Hz synchronous Speed 750r/min(8Poles)
Y-132S-8 2.2 3 710 5.85 80.5 0.71 5.5 2.0 2.0
Y-132M-8 3.0 4 710 7.72 82 0.72 5.5 2.0 2.0
Y-160M1-8 4.0 5.5 720 9.91 84 0.73 6.0 2.0 2.0
Y-160M2-8 5.5 7.5 720 13.3 85 0.74 6.0 2.0 2.0
Y-160L-8 7.5 10 720 17.7 86 0.75 5.5 2.0 2.0
Y-180L-8 11.0 15 730 24.8 87.5 0.77 6.0 2.0 2.0
Y-200L-8 15.0 20 730 34.1 88 0.76 6.0 2.0 2.0
Y-225S-8 18.5 25 730 41.3 89.5 0.76 6.0 1.7 2.0
Y-225M-8 22.0 30 730 47.6 90 0.78 6.0 1.8 2.0
Y-250M-8 30.0 40 740 63.0 90.5 0.80 6.0 1.8 2.0
Y-280S-8 37.0 50 740 78.2 91 0.79 6.0 1.8 2.0
Y-280M-8 45.0 60 740 93.2 91.7 0.80 6.0 1.8 2.0
Y-315S-8 55.0 75 740 114 92 0.80 6.0 1.6 2.0
Y-315M-8 75.0 100 740 152 92.5 0.81 6.5 1.6 2.0
Y-315L1-8 90.0 125 740 179 93 0.82 6.5 1.6 2.0
Y-315L2-8 110.0 150 740 218 93.3 0.82 6.3 1.6 2.0
380V 50Hz synchronous Speed 600r/min(10Poles)
Y315S-10 45 60 590 101 91.5 0.74 6.0 1.4 2.0
Y-315M-10 55 75 590 123 92 0.74 6.0 1.4 2.0
Y-315L2-10 75 100 590 164 92.5 0.75 6.0 1.4 2.0

Detailed Photos

 

 

Our OEM Motors, Diesel generator sets ,Alternators are talior made to fit the OEM customer’s application.  Our  based Engineering Design team work with you to ensure the motor meets your individual needs.

All Motors, Diesel generator sets ,Alternators may be designed for optional voltages and frequencies.

 

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Customization:
Available

|

electric motor

How do manufacturers ensure the quality and reliability of electric motors?

Manufacturers employ several measures and quality control processes to ensure the quality and reliability of electric motors. These measures span from design and manufacturing stages to testing and inspections. Here’s a detailed explanation of how manufacturers ensure the quality and reliability of electric motors:

  1. Robust Design and Engineering: Manufacturers invest significant effort in designing electric motors with robust engineering principles. This involves careful selection of materials, precise calculations, and simulation techniques to ensure optimal performance and durability. Thorough design reviews and analysis are conducted to identify potential issues and optimize the motor’s design for reliability.
  2. Stringent Manufacturing Processes: Manufacturers adhere to stringent manufacturing processes to maintain consistent quality standards. This includes using advanced manufacturing technologies, automated assembly lines, and precision machining to ensure accurate and reliable motor production. Strict quality control measures are implemented at each stage of manufacturing, including material inspection, component testing, and assembly verification.
  3. Quality Control and Testing: Comprehensive quality control and testing procedures are implemented to assess the performance and reliability of electric motors. This includes electrical testing to verify motor characteristics such as voltage, current, power consumption, and efficiency. Mechanical testing is conducted to assess factors like torque, vibration, and noise levels. Additionally, endurance tests are performed to evaluate the motor’s performance over extended operating periods.
  4. Certifications and Compliance: Electric motor manufacturers often obtain certifications and comply with industry standards to ensure quality and reliability. These certifications, such as ISO 9001, IEC standards, and UL certifications, demonstrate that the manufacturer follows recognized quality management systems and meets specific requirements for product safety, performance, and reliability. Compliance with these standards provides assurance to customers regarding the motor’s quality.
  5. Reliability Testing: Manufacturers conduct extensive reliability testing to assess the motor’s performance under various conditions and stress factors. This may include accelerated life testing, temperature and humidity testing, thermal cycling, and load testing. Reliability testing helps identify potential weaknesses, evaluate the motor’s robustness, and ensure it can withstand real-world operating conditions without compromising performance or reliability.
  6. Continuous Improvement and Feedback: Manufacturers emphasize continuous improvement by gathering feedback from customers, field testing, and warranty analysis. By monitoring the performance of motors in real-world applications, manufacturers can identify any issues or failure patterns and make necessary design or process improvements. Customer feedback also plays a crucial role in driving improvements and addressing specific requirements.
  7. Quality Assurance and Documentation: Manufacturers maintain comprehensive documentation throughout the production process to ensure traceability and quality assurance. This includes recording and tracking raw materials, components, manufacturing parameters, inspections, and testing results. Proper documentation allows manufacturers to identify any deviations, track the motor’s history, and enable effective quality control and post-production analysis.
  8. Supplier Evaluation and Control: Manufacturers carefully evaluate and select reliable suppliers for motor components and materials. Supplier quality control processes are established to ensure that the sourced components meet the required specifications and quality standards. Regular supplier audits, inspections, and quality assessments are conducted to maintain a consistent supply chain and ensure the overall quality and reliability of the motors.

By implementing these measures, manufacturers ensure the quality and reliability of electric motors. Through robust design, stringent manufacturing processes, comprehensive testing, compliance with standards, continuous improvement, and effective quality control, manufacturers strive to deliver electric motors that meet or exceed customer expectations for performance, durability, and reliability.

electric motor

Are there any emerging trends in electric motor technology, such as smart features?

Yes, there are several emerging trends in electric motor technology, including the integration of smart features. These trends aim to improve motor performance, efficiency, and functionality, while also enabling connectivity and advanced control capabilities. Here’s a detailed explanation of some of the emerging trends in electric motor technology:

  1. Internet of Things (IoT) Integration: Electric motors are becoming increasingly connected as part of the broader IoT ecosystem. IoT integration allows motors to communicate, share data, and be remotely monitored and controlled. By embedding sensors, communication modules, and data analytics capabilities, motors can provide real-time performance data, predictive maintenance insights, and energy consumption information. This connectivity enables proactive maintenance, optimized performance, and enhanced energy efficiency.
  2. Condition Monitoring and Predictive Maintenance: Smart electric motors are equipped with sensors that monitor various parameters such as temperature, vibration, and current. This data is analyzed in real-time to detect anomalies and potential faults. By implementing predictive maintenance algorithms, motor failures can be anticipated, enabling maintenance activities to be scheduled proactively. This trend reduces unplanned downtime, improves reliability, and optimizes maintenance costs.
  3. Advanced Motor Control and Optimization: Emerging electric motor technologies focus on advanced motor control techniques and optimization algorithms. These advancements allow for precise control of motor performance, adapting to changing load conditions, and optimizing energy efficiency. Additionally, sophisticated control algorithms enable motor systems to operate in coordination with other equipment, such as variable speed drives, power electronics, and energy storage systems, resulting in improved overall system efficiency.
  4. Energy Harvesting and Regenerative Features: Electric motors can harness energy through regenerative braking and energy harvesting techniques. Regenerative braking allows motors to recover and convert kinetic energy into electrical energy, which can be fed back into the system or stored for later use. Energy harvesting technologies, such as piezoelectric or electromagnetic systems, can capture ambient energy and convert it into usable electrical energy. These features enhance energy efficiency and reduce overall power consumption.
  5. Integration with Artificial Intelligence (AI) and Machine Learning (ML): The integration of electric motors with AI and ML technologies enables advanced motor control, optimization, and decision-making capabilities. AI and ML algorithms analyze motor performance data, identify patterns, and make real-time adjustments to optimize efficiency and performance. The combination of AI/ML with electric motors opens up possibilities for autonomous motor control, adaptive energy management, and intelligent fault detection.
  6. Miniaturization and Lightweight Design: Emerging trends in electric motor technology focus on miniaturization and lightweight design without compromising performance. This trend is particularly relevant for portable devices, electric vehicles, and aerospace applications. Advancements in materials, manufacturing processes, and motor design allow for smaller, lighter, and more powerful motors, enabling greater mobility, improved efficiency, and increased power density.

The integration of smart features in electric motor technology is driving advancements in connectivity, data analytics, predictive maintenance, advanced control, energy harvesting, AI/ML integration, and miniaturization. These trends are revolutionizing the capabilities and functionality of electric motors, making them more intelligent, efficient, and adaptable to various applications. As technology continues to evolve, electric motors are expected to play a crucial role in the ongoing transition towards smart and sustainable industries.

electric motor

What is an electric motor and how does it function?

An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:

  1. Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
  2. Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
  3. Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
  4. Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
  5. Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
  6. Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.

In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.

China manufacturer Rated Speed 910~2840rpm 2HP AC Motor Three Phase Electric Motor   vacuum pump oil	China manufacturer Rated Speed 910~2840rpm 2HP AC Motor Three Phase Electric Motor   vacuum pump oil
editor by CX 2023-12-07

China wholesaler Brushed DC Electric Worm Geared Reduction Motor with Encoder vacuum pump adapter

Product Description

What is applications use gear motor?
Electric gear motors are used in various applications that require for high output torque and low output rotation speed.

What is gear motor?
Gear motor is combined electric motor with gear reducer box.
 

Would you like to be GPG motor wholesaler,dealer,distributor,stockist?

GPG motor can improve your business.
 

Taibang gear motor is ideal drive for all kinds of industrial automation products for both industrial and commercial application.
What you can be provided by us is steady quality products(quite and efficient performance gear motor) and engineering solution.

The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV medium gear motors, planetary gear motor,worm gear motor,right angle CHINAMFG and hollow shaft gear motor, etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

1)The stator is made of high quality low carbon steel seamless steel tube and ferrite permanent magnet.

2)The rotor consists of silicon steel sheet,copper coil,commutator and insulating material,etc.

3)The rotor shaft is made of high performance medium carbon alloy steel and processed by special technics.There are round shaft and gear shaft.

4)The bearing and oil seal is selected from CHINAMFG brand to ensure good running performance and sealing effect.

5)The wire is made from high temperature resistant and flame retardant material.

Should you any questions,please feel free to contact Ms Susan Liu directly.
Please leave message or send inquiry.I will be back to you asap.

Model Instruction
 

Model Gear Head  Rated Power
 
Voltage
 
Ampere Speed Torque Shell Diameter Motor Height
W   V A r/min mN.m  mm 08

GDM08-SC

4GN 30 12 4.6 1500 190.9 Φ69 105
1800 159.08
2200 130.2
24 2.1 1500 190.9
1800 159.08
2200 130.2

 

Reduction Ratio       L1                     L2                  L3            
1:3~1:20       105mm        32mm     137mm
1:25~1:300       105mm        44mm     149mm

 

FAQ

Q: How about your company?
A:We are gear motor factory located in HangZhou city of China and established in 1995.We have more than 1200 workers.Our main product  is AC micro gear motor 6W to 250W, AC small gear motor 100W to 3700W,brush DC motor 10W to 400W,brushless motor 10W to 750W,drum motor 60W to 3700W ,planetary gearbox , and worm gearbox,etc.

Q: How to choose a suitable motor?
A:If you have gear motor pictures or drawings to show us, or you tell us detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can suggest suitable motor per your request .

Q: Can you make the gear motor with customize specifications ?
Yes, we can customize per your request for the voltage, speed, torque and shaft size and shape. If you need additional wires or cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: What’s your lead time?
A: Usually our regular standard product will need 10-15days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Q: What is your MOQ?
A: If delivery by sea ,the minimum order is 100 pieces, if deliver by express, there is no limit.

Q: Do you have the item in stock?
A: I am sorry we do not have the item in stock, All products are made with orders.

Q: How to contact us ?
A: You can send us enquiry . 
 

Application: Industrial, Household Appliances, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Compound
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

Can you provide examples of machinery or equipment that rely on electric motors?

Electric motors are extensively used in various machinery and equipment across different industries. They play a crucial role in converting electrical energy into mechanical energy to power a wide range of applications. Here are some examples of machinery and equipment that heavily rely on electric motors:

  • Industrial Machinery: Electric motors are found in numerous industrial machinery and equipment, such as pumps, compressors, fans, conveyors, agitators, mixers, and machine tools. These motors provide the necessary power for moving fluids, gases, and materials, as well as driving mechanical processes in manufacturing, mining, construction, and other industrial applications.
  • Electric Vehicles: Electric motors are the primary propulsion system in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They provide the power needed to drive the wheels and propel the vehicle. Electric motors in EVs and HEVs offer high efficiency, instant torque, and regenerative braking capabilities, contributing to the advancement of sustainable transportation.
  • Household Appliances: Many household appliances rely on electric motors for their operation. Examples include refrigerators, air conditioners, washing machines, dishwashers, vacuum cleaners, blenders, and electric fans. Electric motors enable the movement, cooling, or mechanical functions in these appliances, enhancing convenience and efficiency in daily household tasks.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for various functions. Motors power the fans in air handling units, circulate air through ducts, and drive compressors in air conditioning and refrigeration systems. Electric motors in HVAC systems contribute to efficient temperature control and air circulation in residential, commercial, and industrial buildings.
  • Medical Equipment: Electric motors are essential components in a wide array of medical equipment. Examples include MRI machines, X-ray machines, CT scanners, surgical robots, dental drills, infusion pumps, and patient lifts. These motors enable precise movements, imaging capabilities, and mechanical functions in medical devices, supporting diagnostics, treatment, and patient care.
  • Power Tools: Electric motors are commonly used in power tools such as drills, saws, grinders, sanders, and routers. They provide the rotational force and power required for cutting, shaping, drilling, and other tasks. Electric motors in power tools offer portability, ease of use, and consistent performance for both professional and DIY applications.
  • Aircraft Systems: Electric motors are increasingly utilized in aircraft systems. They power various components, including landing gear actuation systems, fuel pumps, hydraulic systems, and cabin air circulation systems. Electric motors in aircraft contribute to weight reduction, energy efficiency, and improved reliability compared to traditional hydraulic or pneumatic systems.

These examples represent just a fraction of the machinery and equipment that rely on electric motors. From industrial applications to household appliances and transportation systems, electric motors are integral to modern technology, providing efficient and reliable mechanical power for a wide range of purposes.

electric motor

Can electric motors be used in renewable energy systems like wind turbines?

Yes, electric motors can be used in renewable energy systems like wind turbines. In fact, electric motors play a crucial role in converting the kinetic energy of the wind into electrical energy in wind turbines. Here’s a detailed explanation of how electric motors are utilized in wind turbines and their role in renewable energy systems:

Wind turbines are designed to capture the energy from the wind and convert it into electrical power. Electric motors are used in wind turbines to drive the rotation of the turbine blades and generate electricity through the following process:

  1. Wind Capture: The wind turbine blades are designed to efficiently capture the kinetic energy of the wind. As the wind blows, it causes the blades to rotate.
  2. Blade Rotation: The rotational motion of the turbine blades is achieved through electric motors known as pitch motors. Pitch motors adjust the angle or pitch of the blades to optimize their orientation relative to the wind direction. The electric motors drive the mechanical mechanism that rotates the blades, allowing them to capture the maximum energy from the wind.
  3. Power Generation: The rotation of the wind turbine blades drives the main shaft of the turbine, which is connected to an electric generator. The generator consists of another electric motor known as the generator motor or generator rotor. The rotational motion of the generator rotor within a magnetic field induces an electrical current in the generator’s stator windings, producing electricity.
  4. Power Conversion and Distribution: The electricity generated by the wind turbine’s generator motor is typically in the form of alternating current (AC). To make it compatible with the electrical grid or local power system, the AC power is converted to the appropriate voltage and frequency using power electronics such as inverters. These power electronics may also incorporate electric motors for various conversion and control functions.
  5. Integration with Renewable Energy Systems: Wind turbines, equipped with electric motors, are integrated into renewable energy systems to contribute to the generation of clean and sustainable power. Multiple wind turbines can be connected together to form wind farms, which collectively generate significant amounts of electricity. The electricity produced by wind turbines can be fed into the electrical grid, used to power local communities, or stored in energy storage systems for later use.

Electric motors in wind turbines enable the efficient conversion of wind energy into electrical energy, making wind power a viable and renewable energy source. The advancements in motor and generator technologies, along with control systems and power electronics, have enhanced the performance, reliability, and overall efficiency of wind turbines. Additionally, electric motors allow for precise control and adjustment of the turbine blades, optimizing the energy capture and minimizing the impact of varying wind conditions.

Overall, the use of electric motors in wind turbines is instrumental in harnessing the power of wind and contributing to the generation of clean and sustainable energy in renewable energy systems.

electric motor

What industries and applications commonly use electric motors?

Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:

  1. Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
  2. Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
  3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
  4. Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
  5. Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
  6. Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
  7. Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
  8. Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.

These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.

China wholesaler Brushed DC Electric Worm Geared Reduction Motor with Encoder   vacuum pump adapter	China wholesaler Brushed DC Electric Worm Geared Reduction Motor with Encoder   vacuum pump adapter
editor by CX 2023-12-06

China factory Single Phase 3HP Motor Worm Reduction 90 Degree Worm Gear Box Professional Manufacture Transmission Gearbox with Hot selling

Product Description

Why Choose Us

Product Details

 

Type

Worm Gear Speed Reducer/ gearbox

Model

WMRV 25/30/40/50/63/75/90/110/130/150/185

Ratio

7.5,10,15,20,25,30,40,50,60,80,100.

Color

Blue(RAL5571)/Silver grey (K9149) Or On Customer Request

Material

Housing: Aluminum alloy(size 25~90) / Cast iron(size 110~185)

Worm wheel: Aluminum Bronze or Tin Bronze

Worm shaft: 20CrMn Ti  

Output Shaft: steel-45#

 

Packing

Carton, Honey Comb Carton, Wooden Case with wooden pallet
Warranty 1 Year
Input Power 0.09kw,0.18kw,1.1KW,1.5KW,2.2KW,3KW,4KW,5.5KW,7.5KW,11Kw and so on.
Usages Industrial Machine: Food Stuff, Ceramics, CHEMICAL, Packing, Dyeing,Wood working, Glass.
IEC Flange IEC standard flange or on customer request
Lubricant Synthetic oil or worm gear oil

 

Company Profile

Exhibition

Customized Service

Certificate&Honor

Customer Comments

FAQ

1. How to choose a gearbox which meets our requirement?
You can refer to our catalogue to choose the gearbox or we can help to choose when you provide
the technical information of required output torque, output speed and motor parameter etc.

2. What information shall we give before placing a purchase order?
a) Type of the gearbox, ratio, input and output type, input flange, mounting position, and motor information etc.
b) Housing color.
c) Purchase quantity.
d) Other special requirements.

3. What industries are your gearboxes being used?
Our gearboxes are widely used in the areas of textile, food processing, beverage, chemical industry,
escalator,automatic storage equipment, metallurgy, tabacco, environmental protection, logistics and etc.

4. Do you sell motors?
We have stable motor suppliers who have been cooperating with us for a long-time. They can provide motors
with high quality.

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Worm
Step: Double-Step
Samples:
US$ 25/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gearbox

Is it Better to Repair or Replace a Damaged Gearbox?

Deciding whether to repair or replace a damaged gearbox depends on several factors and considerations:

  • Extent of Damage: Assess the severity of the gearbox damage. Minor issues like worn bearings or seals may be repairable, while extensive damage may necessitate a replacement.
  • Cost of Repair: Compare the cost of repairing the gearbox to the cost of replacing it with a new or remanufactured unit. In some cases, repairs might be more cost-effective.
  • Availability of Parts: Availability of replacement parts for the gearbox can influence the repair option. If parts are hard to find, replacement might be a more viable choice.
  • Age and Condition: Consider the age and overall condition of the vehicle. If the vehicle is older and nearing the end of its lifespan, a replacement gearbox might offer better long-term reliability.
  • Performance and Efficiency: A new or remanufactured gearbox might offer improved performance and efficiency compared to a repaired one.
  • Future Maintenance: Evaluate potential future maintenance needs of both repair and replacement options. A replacement gearbox might come with a warranty and require less frequent maintenance.
  • Professional Assessment: Seek advice from a qualified mechanic or technician who can thoroughly assess the gearbox and provide recommendations based on expertise.

Ultimately, the decision to repair or replace a damaged gearbox should be based on a careful evaluation of these factors. It’s recommended to consult with professionals to make an informed choice that best suits your specific situation and budget.

China factory Single Phase 3HP Motor Worm Reduction 90 Degree Worm Gear Box Professional Manufacture Transmission Gearbox   with Hot selling		China factory Single Phase 3HP Motor Worm Reduction 90 Degree Worm Gear Box Professional Manufacture Transmission Gearbox   with Hot selling
editor by CX 2023-12-04

China manufacturer 60W 90mm Induction AC Electric Motor for Conveyor Belt vacuum pump brakes

Product Description

Product Description

60W 90mm AC Gear Electric Motor

1. Light weight, compact dimension;
2. Wide speed range and high torque;
3. Low noise and high efficiency;
4. Stable and safe, long lifetime;
5. Multi-structure, various assembling methods;
6. One-stop solution with speed controller, driver, encoder, brake and transformer available.

Motor Specification
 

Motor Type Induction motor, reversible motor, speed adjustable motor, brake motor
Frame Size 60 mm, 70mm, 80mm, 90mm, 100mm
Motor Speed 1250rpm – 1800rpm
Gearbox Speed Ratio 1:3 – 1: 500
Motor Power 60mm: 6W, 10W

70mm: 15W, 20W

80mm: 25W, 30W

90mm: 40W, 60W, 90W, 120W

100mm: 120W, 140W, 160W, 180W, 200W, 250W, 370W

Output Shaft 8mm ~ 15mm; round shaft, D-cut shaft, key-way shaft, hollow shaft
Voltage 110v, 220v, 230v, 380v
Frequency 50Hz, 60Hz

Note:

If this model is not what you want, please freely tell us about your requirement. We will provide you with a suitable motor solution and price soon.

About Our Company

HISTORY: Greensky is a mechanical brand of CHINAMFG Power Co., Ltd. with over 10 years’
mechanical manufacturing experiences. Greensky Power always strictly stands on the
principle of Best Customer Satisfaction.

MISSION: Material Inspection, Production Control, Finished Goods Test, Pre-delivery Inspection

QUALITY: “Once and forever” is our goal to serve customers in the world. Once we do
business with the customer, we will do business forever.

MARKET: 30 different countries, mainly Germany, Austria, Japan, USA and Middle-East.

DELIVERY: 100% on-time delivery Guaranteed.

SERVICES: Fast response in English, German, Japanese and Chinese languages.

OEM: Customized orders are welcome at CHINAMFG Power.

Exhibition

Certificates

FAQ

1 Q: What’s your MOQ?
   A: 1unit is acceptable.  

2 Q: What about your warranty for your 1 phase AC gear motor?
 
 A: One year.

3 Q: Do you provide OEM service with customer-logo?
   A: Yes, we could do OEM orders, but we mainly focus on our own brand.

4 Q: How about your payment terms?
   
A: TT, western union and Paypal. 100% payment in advance for orders less $5,000. 30% deposit and balance before delivery for orders over $5,000.

5 Q: How about your packing?
   
A: Carton, Plywood case and foam inside. If you need more, we can pack all goods with pallet 

6 Q: What information should be given, if I buy 1 phase AC gear motor from you?
   
A: Rated power, gearbox ratio, input speed, mounting position. More details, better!

7 Q: How do you deliver the 1 phase ac gear motor?
   
A: We will compare and choose the most suitable ways of delivery by sea, air or express courier.

We hope you will enjoy cooperating with us.

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 4
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

What factors should be considered when selecting the right electric motor for a task?

When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:

  1. Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
  2. Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
  3. Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
  4. Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
  5. Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
  6. Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
  7. Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
  8. Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.

By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

What industries and applications commonly use electric motors?

Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:

  1. Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
  2. Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
  3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
  4. Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
  5. Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
  6. Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
  7. Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
  8. Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.

These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.

China manufacturer 60W 90mm Induction AC Electric Motor for Conveyor Belt   vacuum pump brakesChina manufacturer 60W 90mm Induction AC Electric Motor for Conveyor Belt   vacuum pump brakes
editor by CX 2023-12-04

how does a rack and pinion equipment work?

A rack and pinion gear process is a variety of mechanical system applied to change rotational motion into linear motion. It is made up of a straight toothed rack (a flat bar with tooth together its size) and a pinion equipment (a smaller equipment with teeth). This is how the rack and pinion equipment will work:

1. Rack: The rack is a straight bar with evenly spaced tooth alongside its size. It acts as a linear gear and presents a straight path for motion. The teeth on the rack mesh with the tooth on the pinion equipment.

two. Pinion Gear: The pinion equipment is a tiny equipment with teeth that mesh with the teeth on the rack. It is ordinarily connected to a rotary enter, this sort of as a steering wheel in the scenario of a car’s steering technique. The pinion equipment rotates when the input is turned.

three. Meshing of Enamel: As the pinion equipment rotates, its enamel have interaction with the enamel on the rack, China gear rack manufacturer triggering the rack to move linearly in reaction to the rotation of the pinion equipment. The rotation of the pinion equipment converts into linear movement of the rack.

four. Course of Movement: The direction of linear movement of the rack depends on the orientation of the pinion equipment. If the pinion gear is oriented vertically, the rack will go up and down. If the pinion equipment is oriented horizontally, the rack will move left and suitable.

5. Mechanical Edge: The rack and pinion equipment system is built to supply mechanical edge. Since the pinion equipment is lesser than the rack, each individual rotation of the pinion equipment results in a higher linear displacement of the rack. This presents a mechanical gain, enabling for precise and efficient motion conversion.

Purposes of Rack and Pinion China gear rack:

– Steering system in autos: Rack and pinion gears are typically applied in the steering methods of cars and trucks, vehicles, and other vehicles. When the driver turns the steering wheel, it rotates the pinion gear, which moves the rack, thereby steering the wheels.

– Linear actuators: Rack and pinion gears are employed in different linear movement applications, these as in industrial machinery and automation techniques. The rotational input is made use of to make linear motion for jobs like opening and closing doorways, transferring platforms, or managing robotic arms.

The simplicity and effectiveness of rack and pinion gear systems make them greatly utilised in different mechanical apps exactly where changing rotational motion into linear movement is essential.